Swift/T: Scalable Data Flow Programming
for Many-Task Applications

Justin M. Wozniak

Argonne National Laboratory &
University of Chicago

wozniak@mcs.anl.gov

Daniel S. Katz

Argonne National Laboratory &
University of Chicago

d.katzQieee.org

1. Introduction

Many important application classes that are driving the require-
ments for extreme-scale systems—branch and bound, stochastic
programming, materials by design, uncertainty quantification—can
be productively expressed as many-task data flow programs. The
data flow programming model of the Swift parallel scripting lan-
guage [6] can elegantly express, through implicit parallelism, the
massive concurrency demanded by these applications while retain-
ing the productivity benefits of a high-level language.

However, the centralized single-node evaluation model of
the previously developed Swift implementation limits scalability.
Overcoming this important limitation is difficult, as evidenced by
the absence of any massively-scalable data flow languages in cur-
rent use. The primary challenge is the efficient integration of highly
distributed task load balancing with global access to shared data.

We present here Swift/T, a new data flow language implemen-
tation designed for extreme scalability. Its technical innovations in-
clude a distributed data flow engine that balances program eval-
uation across massive numbers of nodes using data-flow-driven
task execution and a distributed data store for global data access.
Swift/T extends the Swift data flow programming model of exter-
nal executables with file-based data passing to finer-grained appli-
cations using in-memory functions and in-memory data.

We have evaluated the performance and programmability of
Swift/T for a collaboration graph analysis and optimization ap-
plication, a branch-and-bound game solver, and synthetic stress
tests of language constructs. Our tests show that Swift/T can al-
ready scale to 128K compute cores with 85% efficiency for 100-
second tasks. Thus, Swift/T provides a scalable parallel program-
ming model for productively expressing the outer levels of highly-
parallel many-task applications. The benefits of these advances are
illustrated by considering the Swift code fragment in Figure 1.
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Figure 1. Simple data flow application.

The implicit parallelism of this code generates 1 million concur-
rent executions of the inner block of expressions, invoking as many
as 4M function calls (3M within conditional logic). Previously, the
single-node Swift engine would perform the work of sending these
leaf function tasks to distributed CPUs at <500 tasks/sec. The new
Swift/T architecture, in contrast, can distribute the evaluation of the
outer loop to many CPUs, each of which can in turn distribute the
inner loop to many additional CPUs. The diagram on the right illus-
trates how evaluation of the entire program — not just the external
tasks at the leaves of the call graph — can utilize many nodes to
rapidly generate massive numbers of leaf tasks. Tasks in this model
are managed by Turbine and ADLB, described below.

2. Applications

Ensemble studies involving different methodologies such as un-
certainty quantification, parameter estimation, graph pruning, and
inverse modeling all require the ability to generate and dispatch
tasks on the order of millions to the distributed resources. Regional
watershed analysis and hydrology are investigated by the Soil and
Water Assessment Tool (SWAT), which analyzes hundreds of thou-
sands of data files via MATLAB scripts on hundreds of cores. This
application will utilize tens of thousands of cores and more data in
the future. SWAT is a motivator for our work because of the large
number of data files. Biomolecular analysis by using ModFTDock
results in a large quantity of available tasks [3], and represents a
complex, multi-stage workflow.
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Figure 2. Architecture of Swift/T runtime: Engines evaluate Swift
language semantics; workers execute leaf-task applications.

3. Programming Model

We seek to provide a system that allows code written by non-
experts to run at extreme scale. This goal might be infeasible in
a fully general model for parallel computation. However, we focus
on many-task applications, which exhibit simpler coordination pat-
terns but nevertheless can be challenging to scale up in commonly
used message-passing programming models.

Hierarchical programming: We assume that much performance-

critical code will remain in lower level languages such as C, For-
tran, or even assembly, using threads or MPI for fine-grained par-
allelism. Data flow scripting provides a powerful mechanism for
coordinating these high-performance components, as it enables
fault-tolerance, dynamic load balancing and rapid composition of
components to meet new application needs. In Swift, each lower-
level component is viewed as a black box with well-defined inputs
and outputs.

Implicit parallelism: Swift makes parallelism implicit, simi-
larly to other data flow programming languages such as Sisal [2]
and Id [5]. When control enters a code block, any Swift state-
ment in that block can execute concurrently with other statements.
This concurrent execution is feasible because of the functional na-
ture of Swift, where we avoid mutable state and use write-once
variables pervasively to schedule execution based on data depen-
dencies. Each operation, down to basic arithmetic, can be realized
as an asynchronous task, eligible to be executed anywhere in the
distributed-memory computer.

For implicit and pervasive parallelism to be manageable, we
need a simple model for language semantics. It has been argued [1]
that parallel languages should have a deterministic sequential inter-
pretation for most language features, with non-determinism intro-
duced only through explicit non-deterministic constructs. All core
data types in Swift, including arrays, are guaranteed to be deter-
ministic and referentially transparent.

Turbine execution model: Turbine enables distributed execu-
tion of large numbers of user functions and of control logic used
to compose them. Turbine requires the compiler to break user pro-
gram code into many discrete fragments, to enable all work to be
load balanced as discrete tasks. These fragments are either user-
defined leaf functions, such as external compiled procedures or
executables, or control fragments for data flow coordination logic.
Turbine engines execute control tasks, while workers execute leaf
functions, as shown in Figure 2. Execution of a Turbine control
logic fragment may produce additional control fragments that are
redistributed via ADLB. Turbine tracks data dependencies between
tasks in order to know when each is eligible to run. Turbine pro-
vides a globally-addressable distributed future store [7], which
drives data-dependent execution and allows typed data operations.

The Asynchronous Dynamic Load Balancer (ADLB) is an
MPI library for distributing tasks (work units) among worker pro-
cesses [4]. ADLB is a highly scalable system without a single bot-
tleneck, and has been successfully used by large-scale physics ap-
plications.

Mapping Swift functions onto Turbine tasks: Computation-
ally intensive non-Swift functions such as compiled functions or
command-line applications execute as Turbine leaf functions, while
control flow in the Swift language is implemented by using Turbine
control tasks. If, as is often the case, control flow in a Swift func-
tion requires multiple waits for data, that Swift function must be
compiled to multiple control fragments.

Limited non-determinism: Some patterns are difficult to ex-
press efficiently with write-once variables, for example, branch
pruning in branch and bound algorithms and shared counters. Up-
datable variables can better support such patterns. An updatable
variable is initialized to a fixed number, and can then be updated
with one of several commutative update operations. The value re-
trieved by each read will not be deterministic, but the commutativ-
ity property makes the non-determinism more usable than a vari-
able supporting arbitrary mutation.

Swift/T extension functions: Since Swift/T is a many-task
computing language, making external code callable from Swift is
crucial. Currently we support applications that call C/C++/Fortran
functions from Swift scripts, by using SWIG to automatically gen-
erate wrappers.

4. Future Work

We are aware of many potential optimizations to improve Swift/T
performance, such as caching, relaxing consistency, and coalescing
Turbine operations at compile or run time. Garbage collection is
required to support longer-running jobs that create more global
data. We intend to explore other load balancing methods and data-
aware scheduling and expect that advances in this area will yield
many-fold improvements to Swift/T’s current scalability.
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